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Negative Ion Mass Spectra of Some
Polychiorinated 2-Phenoxyphenols
by K. L. Busch,*t A. Norstr6m,** C. -A. Nilsson,** M. M.
Bursey, t and J. R. Hass*

Polychlorinated 2-phenoxyphenols were studied by negative ion mass spectrometry. Common
to almost all of the methane enhanced negative ion mass spectra were (M-1)-, (M-36)--, (M-
37) , (M-72)--, and chorinated quinoxide ions. The (M-36)-- ion does not apparently form in a
mechanism analogous to the thermal or photochemical ring closure of these compounds to form
the chlorinated dioxins. The chlorinated quinoxide ion reflects the number of chlorines on the
ring with hydroxy substituent. Collision-induced dissociation mass-analyzed ion kinetic en-
ergy spectra (CID-MIKES) from different isomers were qualitatively different in both the nor-
mal and charge reversed mode of operation. Comparison of these spectra with those from other
classes of polychlorinated aromatic hydrocarbons such as the dioxins or the furans may reveal a
common negative ion gas phase chemistry.

Introduction
Polychlorinated 2-hydroxydiphenyl ethers (also

termed polychlorinated 2-phenoxyphenols) were
studied by methane-enhanced negative ion mass
spectrometry and collision-induced dissociation
mass-analyzed ion kinetic energy spectrometry
(CID-MIKES). The structures of the compounds
studied are shown as I-XII in Figure 1.
The lower chlorinated phenoxyphenols have

been used in commercial preparations as bacteri-
cides. In addition, those compounds with four to
nine chlorines have been shown to be present in
technical chlorophenol preparations at levels of
from 1 to 5% (1-3). Since the annual production of
pentachlorophenol in the United States is about
40000 tons (4), the potential exists for the entry
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of 400 tons of chlorinated phenoxyphenols into
the environment each year.
The environmental effects of chlorinated pheno-

xyphenols may be cause for concern, as certain of
these compounds may be as toxic as the poly-
chlorinated dioxins or furans (5). In addition, 2-
phenoxyphenols have been shown (6-8) to un-
dergo thermal and photochemical ring closure to
form dioxins as shown in Eq. (1). Thus, municipal

Cx dy Cx Cly
Predioxin

(1)

Dioxin

incineration of refuse is an egregious method for
the introduction of both the 2-phenoxyphenols
and possibly the dioxins into the environment (9,
10). The yield for conversion to dioxins by ther-
mal ring closure depends on temperature, but can
range up to about 5% (11). The yield for photoche-
mical ring closure to form dioxins is about 0.5%
(11). Experiments have also shown that chlo-
rophenol preparations themselves may form
phenoxyphenols photochemically (12), which may
then react further to form the dioxins.
Concern about dioxins, therefore, should be ex-
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FIGURE 1. Compounds studied.

panded to include the 2-phenoxyphenols. The in-
vestigation of these compounds was a logical ex-
tension of our negative ion mass spectrometric
studies of dioxins (13). Since the first presenta-
tion of this data, additional sample compounds
have been received and sophisticated MIKES
computer software has been developed, so this re-
port should be considered preliminary.

Experimental

Methane-Enhanced Negative Ions
Modifications to a Finnigan quadrupole mass

spectrometer to produce negative ions have been
described previously (14). Detection of negative
ions involved the multiplier described by Stafford
(15) in which a Galileo electron multiplier (model
4770) was modified by addition of a copper oxide
coated collision surface near the first dynode. To
detect positive ions, this surface is held at 0 V and
positive ions follow the usual path to the nega-
tively charged first dynode of the electron multi-
plier. To detect negative ions, +2000 V is imposed
upon the surface to attract negative ions, which
on collision form positive ions then detected in the
normal manner.
Methane-enhanced negative ion spectra were

obtained on a Finnigan 3300 quadrupole inter-
faced directly to a Finnigan 9500 gas chromato-
graph. Methane (Linde, ultra high purity) was
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used as a carrier and moderator gas and the
source pressure was 1-2 torr.
The 1.5 m long GC column was packed with 3%

OV 17 on 100/200 Gas-Chrom Q, and was temper-
ature-programmed to elute the phenoxyphenol
into the ion source within 3 min of injection.
Spectra were obtained with source conditions as
identical as possible. The source temperature was
held constant at 160°C.

CID-MIKES

A VG Micromass ZAB-2F mass spectrometer
equipped with a collision cell and MIKES scan
unit was used to obtain MIKE spectra. The ion
source was operated at 100-200°C with Linde
99.97% methane admitted to give a reading of 8 x
10' torr on the source ionization gauge, which
corresponds to ca. 0.3 torr in the source. The emis-
sion current was 1 mA and the electron energy
was 150 eV. Samples were introduced by direct
probe. For collision-induced fragmentation, the
collision cell was operated at an analyzer ioniza-
tion gauge reading of 6-8 x 10-7 torr. The actual
cell pressure then ca. 10-3 torr, and the main beam
intensity was reduced to ca. 50% of its initial
value. Helium was used as collision gas. The
MIKE spectra were scanned at 10 msec/eV.
The synthesis of the compounds used in this

study has been described elsewhere (11).

Results and Discussion

Methane-Enhanced Negative Ion Mass
Spectra
The monoisotopic methane enhanced negative

ion mass spectra of twelve phenoxyphenols, with
from 0 to 8 chlorines, are summarized in Table 1.
Negative ions common to almost all spectra are
(M -1), (M - 36)-, (M -37)-, (M - 72)-, and
the chlorinated quinoxide ion.
The (M - 1)- ion is presumably formed by loss

of the hydroxyl hydrogen. It should be noted that
this (M - 1) - ion does not necessarily form in a
method analogous to similar ions formed by nega-
tive chemical ionization with OH- as a reagent ion
in which the concentration of OH- is much higher
than that of the sample (16). While the hydroxide
ion is ubiquitous contaminant of the background,
the sample concentration during peak elution is
many times that of this background ion. Con-
sequently, (M - 1)- ion is most likely the result of
dissociative resonance capture.
The (M - 36) ion appears in the great major-

ity of these negative ion spectra. In view of the
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Table 1. Monoisotopic methane-enhanced negative ion mass spectra of some polychloro-2-phenoxy phenols.

Relative abundances
Substitution

pattern (M -1)- (M - 36) (M - 37)- (M - 72) Quinoxidea Othersb

100

4' 100 55 (m+35),40
4,4' 30 65 - 100 (1)

4,2',4' 75 65 100 10 (1)
3,4,5,4' 100 60 15 5 (3)
3,4,2',4' 100 85 60 65 20 (2)
4,5,2',4' 100 65 45 80 5 (6)

3,4,5,2',4' 50 100 100 40 10 (3)
4,5,2',4',5' 45 45 30 100 40 (2)
3,4,5,6,4' 85 100 35 15 DiClqu, 5

TriClph, 5
TetraClph, 10

4,5,2',3',5',6' 35 25 100 25 (2) TriClph,25
TetraClph, 10

3,4,5,2',3',5',6' 100 25 95 50 (3) TriClph,20
TetraClph, 90

a Numbers in parentheses denote number of chlorines.
b qu = quinoxide; ph = phenoxide.

ring closure mechanism to form dioxins, it might (as in the 4,2', 4'- and 3,4,5,6,4'-isomers) and this
be expected that the formation of this ion might may not be the major formation mechanism.
be facilitated from 2-phenoxyphenols with appro- Other ions observed include (M + 35)- adduct
priately situated chlorines on the opposite ring. ions and various chlorinated phenoxide ions.
Such an effect is not observed, as seen in Table 1.
The formation of (M - 36)- probably occurs by a
number of different pathways, as suggested for Two types of CID-MIKES experiments were
the polychlorinated diphenyl ethers (17). performed. In the first, mass-analyzed negative
Formation of the (M - 37)- ion occurs in two ions transmitted by the magnetic sector were col-

steps, either (M-H2-Cl) - or (M-H-HCl) - (the lisionally excited and the negative ion fragments
former is preferred thermodynamically). The in- analyzed by the electric sector. In the second, the
termediate is not observed. The abundance of this polarity of the electric sector was reversed, and
ion will reflect the rates of both steps in its forma- the positive ions produced by charge reversal are
tion, and cannot be expected to yield much struc- sampled. In charge reversal, the structure of the
tural information. Much the same can be said positive ion formed by charge stripping is the
about the relative abundances of the (M - 72)- same as that of the negative ion precursor, and
ion. knowledge of positive ion decompositions can be
Formation of the quinoxide ion occurs for every applied to deduce the structure of the negative

chlorinated phenoxyphenol except the 3,4,5,6,4'- ion (18).
isomer and reflects the number of chlorines on the The CID-MIKES spectra of selected (M - 1)-,
ring with the hydroxy substituent. It will be (M - 36) -, (M - 37) -, quinoxide, and chloro-
shown later that the quinoxide ion can be formed phenoxide ions were obtained. Common fragmen-
from the (M - 1)- ion by collision induced dis- tations in normal CID-MIKE spectra are summa-
sociation. The observation of one of these ions, rized in Table 2 and those in the charge-reversed
however, is not always accompanied by the other spectra in Table 3.

Table 2. Common fragmentations and ions observed in CID-MIKE spectra.

(M - 1)- (M - 36) (M - 37)- Quinoxide ions Phenoxide ions

-HCl or -2HCl -H -HCl -CO -H
phenoxide -HCl or 2HCl -HCO -HCl -HCO
quinoxide -H2CO -HCOCl -H2COCl -HCl

-HCOCl -HCOCl -HCOCl
COCl
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Table 3. Common fragmentations observed in charge-reversed CID MIKE spectra.

(M - 1)- (M - 36) (M - 37)- Quinoxide ions Phenoxide

-Cl -Cl -Cl (no losses) Charge reversal
-HCl2CO -COCI -CO -O

-HC1C202 -HCIC202 -CO
-HC12CO (no losses) -OCI

-CoC1
(no losses)

CID-MIKE spectra of the (M - 1) - ions from
three isomeric tetrachloro- and three isomeric
pentachloro-2-phenoxyphenols are shown in Fig-
ures 3 and 4, respectively. In each case, the in-
tensities of other fragment peaks should be com-
pared to the intensities of the peaks for loss of
HC1, which have been made as nearly equal as
practical.

In Figure 2, it can be seen that these trichloro
isomers produce different CID-MIKE spectra.
Loss of 72 as 2HCl occurs with about equal facility
from each isomeric (M - 1)- ion. The A (3,4,5,4')
isomer, produces the appropriate tri-
chloroquinoxide ion. The other two isomers are
dichlorosubstitued on the phenol, and form dich-
loroquinoxide ions. The intensity of this fragment
is about 3 times greater for isomer C (3,4,2',4')
than for B (4,5,2',4'), and the trichloroquinoxide
isomer from A is about 10 times as intense re-
flecting the increased stability of this latter ion.
The (M - 1)- ion of isomer A loses 128, 147, and

155 daltons to form fragment ions. These loses
are not observed in the spectra of the other two
isomers studied. Collisional excitation of the
(M - 1)- ions from both isomers B and C causes
fragmentation to form the dichlorophenoxide ion,
consistent with the isomer pattern.

In Figure 3, it can be seen that the three pen-
tachloro isomers studied produce different spectra
as well. Loss of H10 is common to the spectra of
all three isomers, but loss of 2HC1 is observed only
in two. Isomer D (3,4,5,2',4')produces the tri-
chloroquinoxide ion, as might be expected from
previous discussion. The other two isomers are
phenoxy di- and tetrachlorophenols and thus do
not form this ion. Uncharacteristically, isomer E
(4,5,2',4',5') does not form the dichloroquinoxide
ion, but only di- and trichlorophenoxide ions. The
CID-MIKE spectrum of the (M - 1) - ion from
isomer F (3,4,5,6,4') contains many peaks. Forma-
tion of the tetrachloroquinoxide ion is observed,
and this peak has an intensity 10-15% that of the
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FIGURE 2. CID-MIKE spectra of (A) V, (B) IX, and (C) VII.

Environmental Health Perspectives

Cl OH

Cl

OH

Cl OH

-36

1AI
xl

xl

xl

A

B

C

xlO-10
I
100%4.

128



MAIN BEAM
Cl
CI4I
CI'OH

C'l
0 .I e

~Cl
cI
5~~~~spt-i -
1

,fWZL ,

3Clquin

xlO

D

cL u U
OH cr 3Clphen -72 A J E

Cl Ci xl

-139 4Clqui<n F
Cl OH

xlO xl xlO xl xlQ

ENERGY 100%0
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main beam. Many other fragments are observed
which do not appear in the spectra of the other
isomers.

Interestingly, although formation of the tet-
rachloroquinoxide ion occurs readily from colli-

Cl

Cl OH
_197 -111 -100

sionally excited (M - 1)- ions of isomer F, it is
not observed in the methane enhanced negative
ion mass spectrum of this isomer. If formation of
the quinoxide ion requires an (M - 1)- ion inter-
mediate, then the non-collisionally excited
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FIGURE 4. CID-MIKE spectra of (M-36) - ions from two tetrachloro isomers.

November 1980

100%

-36

x x

129



-98/

w^witI ,*& a2II,9A'h A
2zIiv t#qlt/ullutdrll;JEy SllC Julel^*stW4JNisJAlJllli{JEl ;l,yI

90%

30% 40% 50% 60% 70%

Cl OH C

Cl

Cl OH

100%

ENERGY

FIGURE 5. Charge-reversed CID-MIKE spectra of two isomeric (M-1)- ions.

(M - 1)- does not possess enough energy to form
the tetrachloroquinoxide. This seems unlikely,
since every other 2-phenoxyphenol investigated
does undergo this reaction, and the quinoxide ion
is probably formed in a mechanism which does

(M-l)-

(2)
CIX ciClX<+ oKcly

not involve formation of (M - 1)-. This hypothe-
sis will be tested by the appropriate linked scan

experiments. The mechanism of formation under
CID conditions is shown in Eq. (2).

CI

C0

a--,i

The CID-MIKE spectra of other (M -36)-,
(M - 37)-, and (M - 72)- ions were obtained.
Again, differences in the spectra from isomeric
ions could be discerned, as in Figure 4 which
shows the spectra of the (M - 36) - ions from two
tetrachloro isomers. The common losses are as
listed in Table 2. Loss of HCO rather than CO
suggests that the hydroxyl hydrogen is still pres-
ent in the (M - 36) - ion.

Charge-reversed CID-MIKE spectra were ob-
tained for a limited number of ions. Some ions
did not produce charge reversal spectra at all,
while the spectra of others contained numerous
fragments. An example of the latter is shown in
Figure 5, which illustrates the charge-reversed
CID-MIKE spectra of two isomeric tetrachloro
(M - 1)- ions. Although the charge reversed ion
does not appear, fragment ions down to about m/
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FIGURE 6. Normal CID spectrum of 2,3,5,6-tetrachlorophenoxide ion.
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FIGURE 7. Charge-reversed CID spectrum of 2,3,5,6-tetrachlorophenoxide ion.

z 60 are observed. These spectra are very similar,
although the analogous nonreversed spectra
(shown in Figure 2) are clearly different. The in-
tensities of the fragment from HC1 loss and the
pattern at about 0.35 E are the only two readily
apparent differences.
The CID-MIKES spectra of some quinoxide and

phenoxide ions were obtained. Comparison to the
spectra of readily available known isomers of
these compounds would confirm their proposed
identity. The normal and charge-reversed CID
spectra of 2,3,5,6-tetrachlorophenoxide ion are
shown in Figures 6 and 7, respectively (this ion is
found in the spectrum of 3,4,5,2',3',5',6'-heptach-
loro-2-phenoxyphenol). In Figure 6, the loss of
HCO can be observed. Since rearrangements do
not occur on collisional excitation, this loss must
be the result of two very fast steps. The charge
reversed spectrum includes a charge reversed
main beam, and numerous losses, including loss of
16 (0), 28 (CO), and 63 (COCI). In view of differ-
entiation of chlorophenol isomers by IKES (19), it
is to be expected that the CID-MIKE spectra of
these ions can be useful in the determination of
the structure of a unknown polychloro-2-pheno-
xyphenol.
As more isomers of the polychlorinated aro-

matic hydrocarbons become available, the CID-
MIKES studies of these compounds can be ex-
pected to become more informative. Not only can
the quinoxide or phenoxide ions encountered in
the negative ion mass spectrum be compared with
known isomers, but comparisons between classes
may be possible. As an example, the (M - 36)-
ion from these 2-phenoxyphenol ions may be

formed in the same manner as the thermal or
photochemical ring closure loss of HCI to form
dioxins. Although dioxins may not always form
M--, charge reversal of the (M - 36)- from the 2-
phenoxyphenol can be compared directly to the
CID-MIKE spectrum of the M+ from the appro-
priate dioxin. In another case, the (M - 1)- ion
from the 2-phenoxyphenol can be compared to the
(M - 19)- ion from a diphenyl ether.

Conclusions
The methane-enhanced negative ion mass

spectra of polychloro-2-phenoxyphenols contain
(M - 1), (M - 36)-, (M - 37)-, (M - 72)-;
quinoxide and phenoxide peaks. The latter two
ions provide information about the information
about the distribution of chlorines between the
two rings.
CID-MIKE spectra of several negative ions

from these compounds are sufficiently different to
distinguish isomers on a qualitative basis.
Charge-reversed CID-MIKE spectra of isomeric
species show fewer, but still clear differences.
Comparison of the normal and charge-reversed
CID-MIKE spectra of quinoxide and phenoxide
ions with readily available reference isomers may
prove to be the simplest method of isomeric dif-
ferentiation and identification. Collisional ex-
citation of these small ions produces many frag-
ments, sometimes by multistep processes.
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